Animal Resilience – Harnessing the power of plant resilience

Plant resilience determines survival of plants, when faced with stressful conditions. One of the keys to strategies for animal resilience could be the answer to the question: What is helping plants to adapt to climate changes, attacks by microbial pathogens, insect pests and other stressors?

Resilience a key trait to survival

Resilience is a modern name for an inherent trait. It has always been crucial to survival to bounce back from challenges and stressors and carry on living. This is what defines resilience in plants, animals, humans and organisations. The quicker you can adapt to or the lower the impact challenges and stressors can have on your normal functioning the greater the chance of survival in the long term. The more resilient you are, the less support you require from outside, and the more consistent and efficient your performance. This means resilience is a key competitive advantage particularly in stressful situations and times of change.

Why resilience matters in animal production

There is a vast amount of activities and studies currently focusing to increase plant resilience. Things on the animal side are behind, but the pace is already picking up for very similar reasons. Climate change, demands for reduction in the use of chemicals and antibiotic growth promotors, increased concerns for animal welfare and a rapid decline in skilled labour in animal production are driving geneticists back to the drawing board. They all essentially agree: Continued selection for greater performance in the absence of consideration for the adaptive capacity of animals to cope with stressors will result in greater susceptibility to stress and disease. Possibilities for genetic selection and other alternatives to improve the adaptive capacity of animals are currently being explored in various research projects across the world to increase animal resilience.

Extracting plant resilience

As plants evolved, they developed very sophisticated coping mechanisms to stressors, helping plants to be more resilient in the face of stressors and threats to survival.

The exposure of plants to unfavorable environmental conditions increases the production of reactive oxygen species (ROS). As a result, the ROS detoxification process in plants is essential for the protection of plant cells against the toxic effect of ROS. The ROS detoxification systems in plants include enzymatic and non-enzymatic antioxidants. Non-enzymatic antioxidants involved include phenolic compounds, flavonoids, alkaloids, tocopherol and carotenoids. The antioxidant defense systems work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS.

Apart from antioxidants, plants contain a multitude of bioactive substances, with a variety of proven properties such as anti-inflammatory, anti-microbial and aromatic, which are part of their resilience mechanisms for survival and defense. The combination of the many substances makes plants polyvalent to different stressors and threats to survival.

Many plants produce essential oils, which contain those bioactive substances to protect them from stressors and disease in a more concentrated form. Essential oils are volatile oils, which can be extracted from plants by distillation. These oils have a long history as food preservatives and today many of them are classified as Generally Recognized as Safe (GRAS) by the Food and Drug Administration (FDA).

Applying the secret of plants to support animal resilience

On a cellular level, animals experience similar type of stress reactions to plants. Stressors, such as heat, dietary changes, weaning, transition period and mycotoxins will cause an increase in the production of ROS, trigger inflammatory responses and increase permeability of cells in the gut. This again can make the animal more susceptible to disease.

Extracting essential oils from plants containing the very same bioactive components, that are helping plants to cope and resist stressors, and applying them to animal nutrition concepts, can help to support the resilience of animals. Gut agility activators are new nutritional concepts based on some of the mechanisms to plant resilience and are specifically designed to improve the animal’s adaptability to stressors. This then provides a way to support animal resilience by nutritional means.

Related articles

Resilience – economic value in animal production 

Strategies for greater robustness and laying persistency in layers 

Labour shortage drives the need for cow resilience 

How some cows can give heat stress the cold shoulder 

#Heatawarenessday – Are your birds prepared?

#heatawarenessday is today Friday 31st of May. The Heat Awareness Day is observed on the last Friday in May every year to remind us of rising temperatures due to climate change. The day was created in order to spread awareness to overcome high-temperature related issues.

The U.S. livestock production industry incurs an estimated total annual economic loss of $1.69 to $2.36 billion due to heat stress.

Heat stress in broilers and laying hens

Heat stress is one of the most important environmental factors impacting on performance of chicken. One of the main effects is reduced feed intake, with subsequent drops in growth rate, egg quality and egg production. Broilers subjected to chronic heat stress had a significant reduction of feed intake of −16.4%. Many studies have shown impaired growth performance in broilers subjected to heat stress. In laying hens, a 12-day heat stress period caused a daily feed intake reduction of 28.58 g/bird, resulting in a 28.8% decrease in egg production.

In general, birds react similarly to heat stress, but express individual variation of intensity and duration of responses, which may also be affected by intensity and duration of the heat stress event. increasing evidence indicates that much of the variation in response to heat stress is apparently genetically based.
Under high temperatures as the bird’s body attempts to maintain its thermal homeostasis, increased levels of reactive oxygen species (ROS) occur. Consequently, the body enters a stage of oxidative stress, and starts producing and releasing heat shock proteins (HSP) to try and protect itself from the deleterious cellular effects of ROS.

Oxidative stress is the starting point of the intestinal permeability dysfunctional process. Under heat stress conditions, increased concentrations of ROS occur leading to increased intestinal permeability, which in turn facilitates the translocation of bacteria from the intestinal tract and inflammation.

The detrimental impact of heat stress on bird performance, urges producers to implement suitable managemental strategies to minimize the production losses incurred through heat stress in the poultry industry.

Heat resilience in chickens

As breeding goals increased production efficiency, the susceptibility towards heat stress also increased in domestic chicken. So, in the current changing climate scenario, researchers are looking for a permanent solution to heat stress to sustain poultry production longer term. Differences between genotypes of chicken in heat resilience provide evidence for the possibility of genetic intervention, when it comes to heat stress in chicken. Several superior thermo-tolerant genes have already been identified by researchers such as the naked neck gene, frizzle gene or the dwarf gene, which made the bird resistant to heat stress through slow and reduced feathering, curling the feather so as to improve the heat dissipation and reduction in body size to minimize metabolic heat production. Further genes were identified that increase the thermo-tolerance of birds without compromising the production potential.

Feeding for resilience to heat stress

New nutritional concepts, such as gut agility activators, are designed to support the adaptive capacity and hence resilience of the bird by nutritional means. They help the bird to adapt to nutritional challenges by minimizing stress reactions including oxidative stress and reduced feed intake, that would otherwise impact performance, health and wellbeing of the bird. The gut agility activator Anco FIT Poultry has shown to maintain high feed intakes and reduce oxidative stress in birds under heat stress compared to control animals and thus maintain higher growth performance.

References

Felver-Ghant, J.N. et al. (2012). Genetic variations alter physiological responses following heat stress in 2 strains of laying hens, Poultry Science
Lara, L.J. and Rostagno, M.H. (2013). Impact of Heat Stress on Poultry Production, Animals MDPI
Vandana, G.D. and Sejian, V. (2018). Towards identifying climate resilient poultry birds. Journal of Dairy, Veterinary & Animal Research

How some cows can give heat stress the cold shoulder

Some cows are cooler than others in the face of summer heat. What is their secret to resist heat stress? Scientists are beginning to discover that resilience plays an important role in dairy cows, when it comes to coping with rising temperatures.

Climate change drives research into heat stress

As June approaches temperatures are rising and so is the risk for heat stress in cows. Temperatures are rising, not just now, because we are at the end of May, but also in general. Our climate is changing, and we can expect to see increases in temperature over the coming century. According to recent predictions, global temperatures are expected to rise by 1.4–3.0°C by the end of this century. Not surprisingly several large-scale research projects are currently under way in different parts of the world for a better understanding of heat stress in cattle and more importantly to find ways of managing it more effectively. The goal being to maintain cow welfare, health and productivity in a sustainable way as temperatures rise. Strategies to mitigate heat stress include physical protection, nutritional management and more recently the potential for genetic improvement in heat tolerance is researched.

Milk yield and quality spoils with heat stress

Heat-stressed dairy cows produce less milk and the quality of their milk is reduced. On top of that heat stress can interfere with the cow’s ability to conceive and can increase susceptibility to disease. This can lead to significant economic losses. Consequently, there is considerably incentive to increase the capacity of dairy cows to maintain productivity and fitness in the face of stresses associated with climate change to support food security.

Science turns to resilience for heat tolerance

Several research groups across the world, for example in the UK, India, United States and Australia are researching the challenge of enhancing the resilience of livestock to climatic variability and climate change. They all essentially agree that animal agriculture’s adaptation to climate change should involve technological advances for climate resilient animals. However, continued selection for greater performance in the absence of consideration for heat tolerance will result in greater susceptibility to heat stress.

Scientists at the University of Armidale claim that for the concept of resilience the animal’s reactions with its environment are central. They characterise resilience as the capacity of the animal to return rapidly to its pre-challenge state following short-term exposure to a challenging situation. Therefore, resilience is a comparative measure of differences between animals in the impact of a challenge. Resilience can arise due to lower sensitivity or better adaptability to the challenge. Thus, resilience relies particularly on the reaction of the animal to stressors. Since, stress responses increase disease susceptibility, improving resilience of farm animals could also provide benefits for their health.

At the cellular level, acute environmental change initiates a “heat shock” or cellular stress response. Changes in gene expression associated with a reaction to an environmental stressor involves acute responses at the cellular level as well as changes in gene expression across a variety of organs and tissues associated with the acclimation response.

Gene expression profiling belongs to novel the approaches to identify higher number of transcripts and pathways related to stress tolerance mechanisms. It is known that genes reacting to a certain stress differ between organisms, species, breeds and even genotypes. The differences show in more efficient stress signal perception and transcriptional changes that can lead to successful adaptive response and adaptations and eventually further tolerance. Newer genomics approaches like next-generation sequencing (NGS) hold great promise for accelerating search for genes related to heat tolerance-related traits. NGS has been used to study variants in cattle to identify genes that contribute to heat tolerance.

Feeding for heat resilience

Improving the adaptive capacity of cows by nutritional means, can help to support resilience in cows to maintain performance under rising temperatures. Gut agility activators, such as Anco FIT are designed to support the cow to adapt to challenges including heat stress more efficiently by minimising stress reactions including oxidative stress at the cellular level, shifts in the rumen balance and reduced feed intake. Those stress reactions would otherwise impact performance, health and wellbeing of the cow. Research has shown that milk fat depression during heat stress can be linked to depressed rumen health. Therefore, optimising rumen function with a gut agility activator can help to reduce the negative impact of heat stress on milk fat and has been proven to be particularly effective, when cows were fed high concentrate diets. Feeding Anco FIT to cows in the hotter months, has been shown to maintain high milk fat and protein yields and low somatic cell counts, indicating that cows with Anco FIT in the diet were able to cope better with the heat, i.e. were more resilient.

Cows love a good on-off sprinkle

Of course, also physical strategies to help reduce heat stress are continuously being evaluated and improved. One of the most effective methods of cooling cows during summer is the use of water sprinklers. When given the choice, cows spend more and more time under sprinklers as the ambient temperature rises. Not having the sprinklers on continuously is more effective in terms of cooling cows, and it also helps to conserve water. The sprinklers should cycle on and off to wet cows and then let them dry off. Cooling is more effective if cows are soaked to the skin during the on time and then evaporative cooling occurs during the off time with fan air. Sprinkler and fan cooling resulted in lower body temperatures and respiration rates, improved dry matter intake and milk yield. However, sprinklers are not recommended in environments where relative humidity could reach over 75% due to the increase in humidity associated with these systems.

More Easter Eggs with Anco FIT Poultry

Need more Easter Eggs? No problem, hens on Anco FIT Poultry are currently producing more eggs for longer than others. This is what recent commercial trials in laying hens, layer breeders and broiler breeders in Brazil and Slovakia are showing.

Adding Anco FIT Poultry to the diets of hens post peak egg production has repeatedly shown to improve laying persistence and hence an increase in the number of eggs over time under commercial conditions. On top of that some farms have also reported reduced mortality in hens.

Ask your local Anco FIT Poultry distributor for more details and how to apply Anco FIT Poultry to diets of laying hens for greater laying persistence.

Learn more about strategies to improve laying persistence and robustness in laying hens

Want to know what we do with Easter Eggs in Austria? Read the fun facts, traditions and recipe below. Happy Easter to everyone, who celebrates it!

Fun facts about Easter Eggs in Austria

Europe’s largest mountain of Easter Eggs

The Easter Market at the old Freyung in Vienna, Austria piles up the largest mountain of painted Easter Eggs in Europe. The pile totals around 40 000 eggs every year.

World’s oldest Easter Egg

The Kramer family in the Austrian state Burgenland is believed to be in the possession of the world’s oldest Easter Egg. In 2019 this hand-scratched Easter Egg is 112 years old.

People in Lower Austria eat 7 eggs at Easter

People in the Austrian state, Lower Austria, where Anco is based, eat around 7 eggs per person around Easter. In total this means 12 million eggs consumed around Easter. (ORF NOE 2018)

Austrian Easter traditions

The main Austrian Easter traditions revolve around eggs.

Decorating eggshells

Decorating eggshells is a long and popular tradition. The decorated eggshells are then hung up with ribbons onto branches in a vase.

Colouring eggs

Coloured hard-boiled eggs are sold in super markets around Easter time. Here the link to a video showing how 30 000 of these Easter eggs are made per hour in Austria. This normally starts in January every year. But many people still make their own at home by boiling the eggs in food colouring.

Video link: Schrall factory in Würmla prepares for Easter 

The company Schrall is based in Würmla, Lower Austria, about 24 minutes by car from the Anco headquarters in Sankt Pölten.

Egg pecking

2 players select a coloured hard-boiled egg each.
They then knock (peck) the eggs with the tip against each other.
The idea is to crack the opponent’s egg while leaving yours unharmed, allowing you to claim the losing egg for yourself.

Recipe – Austrian Easter Egg spread

If you have too many Easter Eggs, there is also a solution, how to make further use of leftover eggs. It is a perfect opportunity to prepare an egg spread, which can also make a tasty Easter dish. Savoury bread spreads are very popular in Austria and are easily prepared. This Easter Egg spread is prepared within 10 min.

Ingredients:
– 5 cooked eggs
– 1/2 small onion
– 3 tablespoons sour cream
– 50 g/ 18,8 oz crème fraîche (with herbs)
– 1 teaspoon chopped chives
– 1/2 teaspoon mustard
– 1/2 teaspoon
– 1/2 teaspoon organic soup powder (for vegetable stock)
– salt
– pepper

Preparation:
Cut eggs into small cubes. Chop the onion very finely. Mix all the ingredients and season with salt and pepper.

 

Strategies for greater robustness and laying persistency in layers

Goals for robustness in birds are being called for to improve animal health and welfare through genetic selection. However, robustness can also be supported by nutritional approaches designed to promote the adaptive capacity of hens. Commercial trials in layer breeding hens have shown that this nutritional strategy leads to improved laying persistency.

Why robustness matters

The combination of breeding for increased production and the intensification of housing conditions for laying hens have not been without consequences. Concerns about animal welfare as well as risks to human health arising from antibiotic-resistant bacteria and disease outbreaks are paving the way to a new research focus and the introduction of robustness or resilience as a desirable trait in animal production.

The concept of robustness includes individual traits of an animal that are relevant for health and welfare. According to Knap 2012 robustness is the ability to combine a high production potential with resilience to stressors. Robustness is based on the possibility to respond adequately to a stressor and is aiming at less disturbed functioning if challenged with a stressor. This leads to a competitive advantage, because maladaptation due to stressors can have negative impacts on animal behavior, metabolism and immunology. Hence, why robustness is rapidly gaining importance in animal production.

The main characteristics important for robustness of production animals are productivity and the capacity to adapt in a wide variety of conditions. Differences in conditions can be due to climate, housing facilities, disease pressure, exposure to pathogens and differences in feed quality and composition. In this context adaptation can be described as a mechanism of the animal that empowers it to cope with internal or external disturbances, stressors or with changes in the environment.

According to a research group at Wageningen University a multi-disciplinary approach is crucial to reveal the determinants of adaptive capacity in farm animals. Adaptive capacity is determined by the genetic background of the bird. However, expression of adaptive capacity and therefore robustness can be supported or inhibited by the actual conditions the birds live in (e.g. nutritional status, social environment, disease pressure, etc.).

Breeding for robustness

Research findings have indicated that an animal’s welfare is dependent on its genetic characteristics, environmental factors and genetic-environmental interactions. This means an animal has the capacity to adapt to its environment. Breeding programs that ensure that animal well-being will improve, while at the same time improving production traits, are multi-level and multi-trait selection, directed at improving associative effects.

Research also showed that group selection increases robustness as indicated by the overall greater ability to cope with stressors. For instance, group selected laying hens had a lower mortality in response to heat exposure in multiple-hen cages compared to the control. This suggests that group selection can be an effective method to increase robustness in laying hens.

Genomic selection, based on dense genetic markers, will allow for more rapid improvement of traits that are expensive or more difficult to measure, or have a low heritability such as pecking, disease resistance, robustness and bone strength.

Feeding for robustness

Effective implementation of robustness into a breeding goal requires large scale genetic research, which for most traits is labour intensive and expensive. Therefore, finding additional ways of improving the adaptive capacity of birds, could speed up the process of reaching the goal for robustness in birds. New nutritional concepts, such as a gut agility activators, are designed to support the adaptive capacity and hence robustness of the bird by nutritional means. They help the bird to adapt to nutritional challenges by minimizing stress reactions such as oxidative stress and reduced feed intake, that would otherwise impact performance, health and wellbeing of the bird. Heat stress, high stocking density and mycotoxins are known factors which normally lead to increased oxidative stress and a reduction in feed intake.

Agile birds ahead in laying persistency

Longer laying cycles can help to cut costs, so they are imperative in a tough economic climate. Plus, they can reduce the environmental impact of egg production. Therefore, there is an increasing focus on improving laying persistence and egg quality at the end of the laying cycle. Benefits of genetic selection for improved laying persistence and stability in egg quality can only be realized if they are matched by improvements in hen nutrition. Poor bird health and environmental stress affect egg formation and the ability of the hen to maintain persistency. This can be aggravated by nutritional stressors in the diet, such as dietary changes, reduced nutrient digestibility, endotoxins, antinutritional factors and mycotoxins. Managing the resilience in birds to those stressors by nutritional means can help to support a better laying persistency.

Adding a gut agility activator, designed to minimize common stress reactions in birds, to the diet of a commercial parent layer flock has been shown to improve laying persistency in the late laying period. This indicates that supporting the adaptive capacity or agility of birds with a gut agility activator improves the chance to maintain laying persistency for longer.

More rapid progress anticipated

So far it has been difficult to quantify robustness directly. However, measurements from wearable sensors and other sources together with the emergence of novel analytical tools may become a game changer for measuring robustness. The livestock industry is already taking advantage of wearable sensors with multiple uses ranging from stress detection, behavior analysis, physiological monitoring and detecting health and disease status of animals.

A barrier to wearable sensors in the poultry industry is the number of birds that are managed on large poultry operations, as fitting every bird with sensory devices is impracticable. Despite this fact, fitting a proportion of the flock with sensors is possible, and the data generated from these birds can be used to assess total flock health.

These tools are likely to enable rapid progress for the management of robustness in farm animals and may also invite rethinking of how we can support and increase the adaptive capacity of laying hens.

Gwendolyn Jones, Published in International Hatchery Practice, Positive Action Publications 2019

Resilience – economic value in animal production

Animal breeding is showing an increasing appetite for resilience to be included as a trait in breeding goals. Scientists working in animal genetics are pointing out the economic value of resilience on farms, where labour time is restricted.

Resilience genes in redheads

Researchers are discovering what makes some humans more resilient than others. For instance, the MC1R gene found in human redheads has been associated with certain characteristics that improve resilience. Redheads have the genetic advantage that they naturally produce their own vitamin D. Most other people need to make sure that they consume plenty of vitamin D, especially when modern lifestyles and weather prevent them from obtaining enough vitamin D from sunlight. Since vitamin D plays an important role in health and fertility, redheads are more resilient because they need less vitamin D than the rest of us.

Better characterisation of resilient phenotypes in farm animals should provide the opportunity to look for similar gene differences in these species.

Can we breed for resilience?

Current developments and future trends in the livestock industry are giving way to a new research focus in genetics for livestock production. This research is looking to develop selection tools for farmers to improve the resilience of animals in their production system.

So far  breeding goals have not included resilience. However, research groups from Australia and the Netherlands have recently demonstrated the potential for resilience in breeding goals and suggested ways of how we could genetically select for it in livestock animals.

Resilience definition in animal production

“The capacity of the animal to be minimally affected by disturbances/challenges or to rapidly return to the state pertained before exposure to a disturbance” (Berghof et al 2019).

Colditz and Hine (2016) describe resilience as a comparative measure of differences between animals in the impact of a challenge and the result of lower sensitivity or better adaptability to a challenge. The biological processes underlying resilience relate to adaptive responses that occur to minimize the impact of a stressor.

How to measure resilience in farm animals

From the definition of resilience as reduced sensitivity to potential disturbances, it follows that the desirable phenotype could be identified by measuring the rate of recovery to baseline and normality of behavioural, physiological, immune or production traits following the disturbance. Instead of measuring the magnitude of these variables while the animal attempts to cope with the stressor.

More recent scientific papers say resilience can be measured based on deviations of expected production and observed production over a period of time. One indicator for more resilient animals could be that they have a smaller variance in deviations of production traits over a period of time than the population average.

For example, there are favorable correlations between the residual variance of feed intake and feed duration with mortality and the number of health treatments in pigs in a challenge environment. This suggests that residual variance of feed intake and feed duration can be used to select for more resilient pigs.

Recent technological advances facilitate the increase in the number of observations that can be made on individual animals to more accurately estimate deviations and consequently genetic parameters. Routine data collection form automatic milking systems (AMS) and automatic feeding systems (AFS) for cattle and pigs are the most well-known and well-developed examples. Animal breeders expect more rapid progress with measurements from wearable sensors, which are already being used for monitoring animal behaviour, physiological changes and detecting health and disease status in animals.

Economic value of resilience

Researchers point out that when determining the economic value of traits, care needs to be taken to avoid double counting. They suggest that the economic value of resilience can be based on labour costs associated with observing animals that show signs of disease or other problems. These could be visual signs or alerts generated by sensors, automatic feeding systems or automatic milking systems.

Labour time is limited. Therefore, farmers have a requirement for healthy and easy-to-manage animals, especially when the number of animals per farm employee is increasing. A reduction in time spent on an animal with an alert will reduce costs associated with labour. Improved resilience results in easier to manage farm animals, which would reduce labour requirements and thus allow more animals per farm. Consequently, selecting for more resilient animals can increase farm profit.

Further reading:

How you can support resilience in laying hens

Labour shortage drives the need for cow resilience to optimize performance

Progressive Dairyman: How to support dairy cows in their defense against DON

New technical article from Anco published by the Progressive Dairyman.

High producing dairy cows are more susceptible to negative impact from stressors in their feed and in their environment. But what matters for performance and efficiency is how the cows respond. Feeding the right natural bioactive substances can help the animal adapt its response in a way that helps maintain milk quality and component yields. This article focuses on how to adapt to the mycotoxin deoxynivalenol (DON) for milk profits.

Link to full article: Taking the sting out of DON for milk profits

Further reading

Effects of oxidative stress in response to mycotoxins in dairy cows

Diets that keep your cows agile for high milk quality

 

Scientific abstract – Phytogenic premix effects on gene expression of intestinal antioxidant enzymes and broiler meat antioxidant capacity

The aim of this study was to investigate the effects of administration level of a dietary phytogenic premix (PP) characterized by carvacrol and thymol (Anco FIT – Poultry) on the gene expression profile of antioxidant enzymes (i.e. CAT, SOD, GPX2, GPX7) and transcription factor Nrf2 at intestinal level. In addition, broiler liver and meat lipid oxidation and total antioxidant capacity (TAC) were determined.

Depending on PP inclusion level (0, 750, 1000 and 2000 mg/kg diet) in a three stage feeding program formulated to meet Cobb 500 nutritional requirements, treatments were: PP-0, P-750, PP-1000 and PP-2000. Feed and water were available ad libitum. Each one of the 4 treatments had 125 broilers arranged in 5 replicates of 25 chickens each. At 42d, 2 birds per treatment replicate were analyzed for gene expression and 4 birds per treatment replicate were pooled for biochemical analyses.

Data were analyzed by ANOVA, taking the treatment as fixed effect. Statistical significant effects (P≤0.05) were further analyzed and means were compared using Tukey HSD test. In addition, polynomial contrasts tested the linear and quadratic effect of PP inclusion levels.

Gene expression of SOD was up-regulated in the duodenum (P=0.027), jejunum (P=0.026) and ceca (P=0.023) in PP-1000 and PP-750 compared to PP-0. Expression of GPX2 was up-regulated in the duodenum (P=0.032) and jejunum (P=0.013) in PP-1000 and in ceca (P=0.006) in PP-2000 compared to PP-0, respectively. In addition, Nrf2 was up-regulated in ceca (P=0.024) in PP-1000 compared to PP-0. Intestinal mucosa TAC was higher in duodenum (P=0.011) and ceca (P=0.050) in PP-1000 compared to PP-0.

Lipid oxidation was delayed in a linear pattern with increasing PP inclusion level in breast (PL=0.020) and liver (PL=0.046). Moreover, the PP inclusion level resulted in higher breast (P=0.005), thigh (P=0.002) and liver (P=0.040) TAC. In particular, breast and thigh TAC increased in a quadratic pattern reaching plateau at PP-1000, whereas liver TAC continued to increase linearly.

Conclusion

Overall, a consistent PP inclusion effect on meat, liver and intestinal antioxidant capacity has been shown with PP-1000 being the most effective.

Authors

Konstantinos C. Mountzouris, Vasileios Paraskeuas, Eirini Griela, George Papadomichelakis and Konstantinos Fegeros

Department of Nutritional Physiology and Feeding, Agricultural University of Athens, 118 55 Athens, Greece

Presented at the EPC 2018 in Dubrovnik, September 2018

Effects of oxidative stress in response to mycotoxins in dairy cows

Reactive oxygen species (ROS) are normally neutralized by sufficient antioxidant levels in the cow. However, an imbalance between the production of ROS and defense ability of the cow to neutralize ROS causes oxidative stress.

Diseases that can cause significant economic losses in dairy herds, such as subclinical mastitis and ketosis, have been associated with increased markers of oxidative stress in the milk. For example, dairy cows with higher levels of somatic cell counts in milk also showed more signs of oxidative stress, as indicated by levels of malondialdehyde and dinitrophenylhydrazine.

Mycotoxins are known to increase oxidative stress. Therefore, they are also a factor, which can predispose dairy cows to subclinical mastitis and ketosis.

As cases of subclinical mastitis in dairy cows can cost on average $110/cow/year and ketosis $150/cow/year, mycotoxins can be a culprit in significant economic losses in dairy herds.

References

Mostert et al 2018. Estimating the economic impact of subclinical ketosis in dairy
cattle using a dynamic stochastic simulation model, Animal, p 145-154

Ruegg 2005. Premiums, Production and Pails of Discarded Milk How Much Money Does
Mastitis Cost You? University of Wisconsin

Abuelo et al 2015 The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation 

Santos and Fink-Gremmels 2014. Mycotoxin syndrome in dairy cattle: characterization and intervention results

Andrei et al 2016. Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J. Anim. Sci., 61, 2016 (9): 407–413

Watch a short video about this topic at the end of the Monday mycotoxin report below

Laying persistency – 500 eggs in a single laying cycle in 100 weeks

Laying persistency is a major trait currently being developed further in laying hens. The “long life” layer, which will be capable of producing 500 eggs in a laying cycle of 100 weeks, is on the horizon.

In Europe, the priority is to increase egg production by breeding for increased persistency in lay and stability in egg quality so that the laying cycle of commercial flocks can be extended to 90–100 weeks. Breeding programs are particularly focusing on improving laying persistency and egg quality at the end of the laying cycle.

Reducing cost of egg production

Economic reasons play an important role in taking this decision. It means less feed is required per egg. Keeping the birds longer will decrease the financial contribution of the 18-week-old pullet to the cost per table egg. Maintaining egg size and quality beyond 75 weeks and up to a target of 100 weeks can have a big impact on the profitability of a flock. The time required to reach the economic break-even of the hen has increased from 34 weeks in 1998 to 52 weeks in 2016. This indicates that longer production cycles are imperative in a tough economic climate.

More sustainable egg production

Longer laying cycles lead to a lower carbon footprint per egg. Furthermore, it was calculated that around 1 g of nitrogen could be saved per dozen eggs for an increase of 10 weeks in production. This can significantly reduce the nitrification impact of increasing or maintaining production, which is especially important in nitrate sensitive areas.

More efficient use of resources and reduction of waste will help to reduce the environmental impact of egg production and preserve the environment.

First commercial flock achieving 500 eggs in 100 weeks

Free range laying systems are following the trend for longer laying periods. The case for extending free-range laying cycles.

Actually, the first commercial flock achieving 500 eggs in 100 weeks, was a free-range laying flock and was reported in June 2018. It involved a 40 000 Dekalb White flock based in Germany. A key success factor in this was that the farmer likes to learn new things.

How to get to 500 eggs in 100 weeks

A decline in egg numbers combined with a deterioration in shell quality are the main reasons for currently replacing flocks at or around 72 weeks of age.

The benefits of genetic selection for improved persistency in lay and stability in egg quality can only be realized if they are matched by improvements in hen nutrition and careful monitoring of the effects of this process on the health and welfare of the hens.

To extend the laying cycle of commercial flocks, long-term maintenance of the tissues and organs involved in producing eggs is required.

Motivational video for 500 eggs in 100 weeks

Nutrition supporting laying persistency

Genetic progress and longer production cycles have consequences for nutrition. Benefits of genetic selection for improved laying persistency and stability in egg quality can only be realized if they are matched by improvements in hen nutrition. There are three important areas that come to mind, when it comes to supporting laying persistence by nutritional means:

1) Careful management of feed/nutrient intake around start of lay and in early laying period

2) Maintaining organs that are important for egg production healthy, e.g. liver

3) Minimizing common stress reactions such as oxidative stress, inflammatory responses and reduction in feed intake to maintain birds healthy and efficient

Supporting birds to keep a positive nutrient balance in the first 10 weeks of lay will help provide a reserve for mid/late lay egg output and improved shell quality.

With older birds it is important to maintain liver health. Consider supporting liver function with relevant additives, such as choline and vitamin E. Adding certain plant extracts to diets has been shown to improve the antioxidant status in laying hens and can be used to prevent oxidative stress. This then also has the potential to prevent fatty liver hemorrhagic syndrome (FLHS).

Managing nutritional stressors

Monitoring mycotoxins in feed also plays a key role for liver health in layers, as mycotoxins will cause oxidative stress and damage to the liver. Laying hens are more sensitive than other poultry to mycotoxins. A longer life makes laying hens ideal candidates for chronic mycotoxicosis, caused by continuous exposure to low levels of toxins.

Poor bird health and environmental stress affect egg formation and the ability of the hen to maintain persistency. This can be aggravated by nutritional stressors in the diet, such as dietary changes, reduced nutrient digestibility, endotoxins, antinutritional factors and mycotoxins.

Nutritional concepts designed to support gut agility, increase the bird’s capacity to adapt to nutritional challenges and live up to its performance potential, particularly under situations of increased stress. Overall, they are a sustainable alternative to help reduce the use of antibiotics in poultry diets, whilst maintaining robust and efficient birds for consistency in the cost-effectiveness of diets at high performance levels.

Adding a product including phytogenic components with antioxidative power and designed for gut agility to the late laying period of a commercial ISA Brown parent layer flock, improved the persistency in lay compared to birds on a control diet.

Recommendations from breeding companies

Feeding laying hens to 100 weeks of age – Lohmann

How to feed layers for a longer production cycle and high performance – Dekalb

Progress in Layer Genetics Longer production cycles, a genetic perspective – ISA